Use very few individual sera from allergic patients, even sometimes only one pool of such sera is available. In the present study, a large population of peanut allergic patients from various European countries was involved leading to significant conclusions. Many studies have demonstrated that physicochemical modifications of proteins, e.g. resulting from processing, may impact on their IgE binding capacity. This includes denaturation or hydrolysis which may lead to the destruction of conformational epitopes, and thus to a decreased IgE binding capacity. Inversely, structural modifications may result in the unmasking of epitopes hidden in the tertiary structure of the molecule and that thus become available for IgE binding. The European Food Safety Authority opinion relating to the evaluation of allergenic foods for labelling purposes also acknowledged that the data available do not indicate whether and how food processing predictably influences allergenicity. With regards to peanut 2S albumins, several linear epitopeshavebeenidentifiedforArah2 and some of them have been proposed as a marker of persistent peanut allergy. However, the relative binding of IgE to the corresponding peptides versus to the native protein was not analyzed. Interestingly, Bernard and coworkers showed that the IgE binding capacity of Ara h 6 was decreased for all the peanut allergic patients in their study and even abolished for 25% of them when the molecule was denatured by reduction and carboxymethylation. This demonstrates the importance of conformation in the allergenicity of this protein and the presence of both conformational and linear epitopes, at least for 75% of their population. In the present study, heat-induced denaturation, hydrolysis and aggregation of Ara h 2/6 result in a significant loss in IgE-binding capacity and ability of the protein to elicit histamine release for all tested sera. Altogether, these results suggest that IgE responses in peanut-allergic individuals are mainly directed towards the natively folded protein. Hydrolysis and oligomerisation observed after heating with or without glucose, may have led to further linear epitope degradation and masking. Thus, it appears that the sensitizing agent driving B-cell responses in this population was mainly native Ara h 2/6 which may have originated from either consumption of raw nuts, or more probably, represent the fraction of Arah2/6 that remains soluble and in its native state even after roasting. However, this also indicates that thermal processing can reduce the allergenic activity of peanut proteins, and may explain why processes such as boiling of peanuts, can reduce their allergenic activity. This study showed that glycation in conjunction with thermal denaturation generally led to a further decrease of IgE binding capacity, rather than the increase found by others, although glycation did appear to preserve slightly more of the proteins mediator releasing capacity compared with heating alone. Some of these differences may relate to the wet-thermal processing procedures employed in this study. Further investigation using heat-denaturation of Ara h 2/6 under low moisture conditions will be required to explain these differences more fully. In conclusion, heating to temperatures able to denature Ara h 2/6 caused a significant decrease in the proteins allergenicity whereas T cell stimulation was not affected which can render these modified proteins attractive for immunotherapy.
Please offer your responses about very important to predict precisely the risk of poor prognosis in order to maximize the therapeutic effect on this http://www.inhibitorclinical.com/index.php/2019/02/23/av-delay-optimized-doppler-echocardiography-evaluating-aortic-velocity-time-integ/.